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The field solution to the electromagnetic scattering of a plane wave by a uniaxial anisotropic sphere is
obtained in terms of a spherical vector wave function expansion form. Using the source-free Maxwell’s
equations for uniaxial anisotropic media and making the Fourier transform of the field quantities, the electro-
magnetic fields in the spectral domain in uniaxial anisotropic media are assumed to have a form similar to the
plane wave expanded also in terms of the spherical vector wave functions. Applying the continuous boundary
conditions of electromagnetic fields on the surface between the air region and uniaxial anisotropic sphere, the
coefficients of transmitted fields and the scattered fields in uniaxial anisotropic media can be obtained analyti-
cally in the expansion form of vector wave eigenfunctions. Numerical results for some special cases are
obtained and compared with those of the classical Lorenz-Mie theory and the method of moments accelerated
with the conjugate-gradient fast-Fourier-transform approach. We also present some new numerical results for
the more general uniaxial dielectric material media.
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I. INTRODUCTION

Recently, there has been a growing interest in the interac-
tion between electromagnetic waves and anisotropic media.
This is because there are many natural and artificial aniso-
tropic materials and they have a variety of applications in
optical signal processing, constructing signal processing, op-
tical frequency elements and devices, enhancement and re-
duction of radar cross sections of various scatterers, charac-
terization of antenna radomes, optimum design of optical
fibers, synthesis of special types of radar absorbers, and fab-
rication of specific substrates for microwave devices(filters,
dividers, and amplifiers) and microstrip antennas.

One of the basic problems to investigate waves in aniso-
tropic media is to characterize the scattering properties of
anisotropic objects. A rigorous solution of scattered fields
can be obtained using the Lorenz-Mie theory of electromag-
netic fields scattered by a homogeneous isotropic dielectric
sphere[1,2], originated by Lorenz in 1890 and Mie in 1908.
The Lorenz-Mie solution can be easily extended to treat ra-
dially inhomogeneous isotropic spheres[3–5]. Scattering by
homogeneous anisotropic objects has attracted a great deal of
interest in recent years—for instance,[6,7]. Numerical meth-
ods have been employed to analyze this problem based on
integral equations[8,9], differential equations[10], and the
analytical method using vector wave eigenfunctions expan-
sions[11]. Although the efforts were primarily spent in the
past on two-dimensional(2D) geometries, some progresses
have been made in the analysis of three-dimensional(3D)
anisotropic scatterers using the method of moments(MOM)

[12,13], combined field(surface) integral equation(CFIE)
formulation [14], the integral equation[15], the coupled di-
pole approximation method[16], the expansion of scalar
fields [17], and the spectrum-domain Fourier-transform ap-
proach [18–20]. In contradistinction to these numerical
methods and analytical solutions, we concentrate in this pa-
per on the analytical solution to the three-dimensional scat-
tering of a plane wave by uniaxial anisotropic sphere.

To obtain a solution of vector wave functions in uniaxial
anisotropic media, we start from the electric field vector
wave equation. Taking the Fourier transform of the electric
field and substituting it into the vector wave equation, we
obtain the characteristic equation. Solving this equation, we
obtain the eigenvalues and corresponding vector wave eigen-
functions. Then, we obtain representative electromagnetic
fields inside and outside the uniaxial anisotropic sphere simi-
larly in terms of their respective spherical vector wave eigen-
functions with their scattering coefficients as unknowns
[1–5] with the expansion of the plane wave factors in terms
of spherical vector wave functions in an isotropic medium
[21]. Application of the continuous boundary conditions of
the tangential electric and magnetic field components on the
uniaxial anisotropic spherical surface leads to the scattering
unknown coefficients determined analytically where or-
thogonality relations of the Legendre polynomials are em-
ployed. Numerical results are obtained to gain more physical
insight into this problem. After the results were validated by
comparison with the existing data, some new results are
computed and discussed.
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In the subsequent analysis, a time dependence of the form
exps−ivtd is assumed for the electromagnetic field quantities,
but is suppressed throughout the treatment.

II. FORMULATION OF THE SCATTERING PROBLEM

Assume that a homogeneous, uniaxial anisotropic sphere
of radiusa is center located in the free space and is shown in
Fig. 1 in the spherical coordinates. The permittivity and per-
meability tensors are characterized by the two matrices

ē = etsx̂x̂ + ŷŷd + ezẑẑ = 3et 0 0

0 et 0

0 0 ez
4 , s1ad

m̄ = mtsx̂x̂ + ŷŷd + mzẑẑ = 3mt 0 0

0 mt 0

0 0 mz
4 . s1bd

TheE-field vector wave equation can be obtained by sub-
stituting the above constitutive relations into the source-free
Maxwell’s equations[11,18–20]—that is,

= 3 fm̄−1 · = 3 Esr dg − v2ē ·Esr d = 0. s2d

The solution to Eq.(2) can be obtained by the Fourier trans-
form

Esr d =E
−`

`

dkxE
−`

`

dkyE
−`

`

Eskdeik·rdkz, s3d

where the wave number is denoted byk =kxx̂+kyŷ+kzẑ,
while the space vector is identified asr =xx̂+yŷ+zẑ, with x̂,
ŷ, ẑ being the unit vectors of a Cartesian coordinate system.
By substituting Eq.(3) into Eq. (2), the wave equation is
transformed into

E
−`

`

dkxE
−`

`

dkyE
−`

`

K̄ skd ·Eskdeik·rdkz = 0, s4d

where

K̄ skd =
1

mt3kz
2 + mky

2 − a1 − mkxky − kxkz

− mkxky kz
2 + mkx

2 − a1 − kykz

− kxkz − kykz ky
2 + kx

2 − a2
4 ,

s5d

with

a1 = v2etmt, s6ad

a2 = v2ezmt, s6bd

m = mt/mz. s6cd

Letting theEskd have nontrivial solutions, we find that the
following characteristic equation is satisfied:

DetfK̄ skdg = 0. s7d

In explicit form, the characteristic equation is rewritten as

Asuk,fkdk4 − Bsuk,fkdk2 + C = 0, s8d

where

Asuk,fkd = a2 cos4 uk + ma1 sin4 uk

+ sa1 + ma2dsin2 uk cos2 uk, s9ad

Bsuk,fkd = sa1
2 + ma1a2dsin2 uk + 2a1a2 cos2 uk, s9bd

C = a1
2a2, s9cd

with

k2 = kx
2 + ky

2 + kz
2, s10ad

uk = tan−1sÎkx
2 + ky

2/kzd, s10bd

fk = tan−1sky/kxd. s10cd

Equation(8) is a biquadratic algebraic equation and has
the following four roots ofk, (where,=1, 2, 3, or 4) for the
radial wave vectors:

k1,3
2 =

a1

cos2 uk + m sin2 uk
, s11ad

k2,4
2 =

a1a2

a1 sin2 uk + a2 cos2 uk
. s11bd

So the correspondingE-field eigenvectors can be easily ob-
tained[18,20,22] from Eq. (5) and are given, forq=1, 2, 3,
and 4, as follows:

Eq = Fq
efqsuk,fkd = fFqx

e suk,fkdx̂ + Fqy
e suk,fkdŷ

+ Fqz
e suk,fkdẑgfqsuk,fkd, s12d

where

Fqx
e = H − sinf, q = 1,3,

Wq
sedsukdcosf, q = 2,4,

J s13ad

FIG. 1. Geometry for electromagnetic scattering of a plane wave
by an uniaxial anisotropic sphere.
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Fqy
e = H cosf, q = 1,3,

Wq
sedsukdsinf, q = 2,4,

J s13bd

Fqz
e = H0, q = 1,3,

1, q = 2,4,
J s13cd

with

Wq
sedsukd =

kq
2 sinuk cosuk

kq
2 cos2 uk − a1

, q = 2,4. s14d

With those obtained eigenvalues and their associated formu-
las, theE field in Eq. (3) is then given as follows:

Esr d = o
q=1

2 E
0

p E
0

2p

Fq
esuk,fkdfqsuk,fkdeikq·rkq

2 sinukdukdfk,

s15d

where

kq = x̂kq sinuk cosfk + ŷkq sinuk sinfk + ẑkq cosuk

and fqsuk,fkd denotes the unknown angular spectrum ampli-
tude. Equation(15) is also known as the eigen-plane-wave
spectrum representation of the electric field in a homoge-
neous uniaxial anisotropic medium. From Eq.(3), it is also
evident that the integration over the radial wave vector com-
ponent is reduced to a summation of four terms correspond-
ing to the roots of Eq.(8), which are the only permissible
solutions. The symmetric roots—i.e.,k=−kq of k=kq sq
=1,2d—are taken into account automatically asu spans from
0 to p while f spans from 0 to 2p. Physically, we need to
sum up for only two of the four components—namely,k1 and
k2.

It is noted that the unknown angular spectrum amplitude
fqsuk,fkd is periodic withuk andfk, respectively. So we can
use surface harmonics of the first kind of expansion for the
fqsuk,fkd as

fqsuk,fkd = o
m8,n8

Gm8n8qPn8
m8scosukdeim8fk, s16d

where Pn
msxd denotes the associated Legendre function of

indicesn andm, andn8 is summed from 0 to +̀, while m8 is
summed from −n8 to n8, and k is pointing in thesuk,fkd
direction in the spherical coordinates. Substituting Eq.(16)
into Eq. (15), we obtain

Esr d = o
q=1

2

o
m8,n8

Gm8n8qE
0

p E
0

2p

Fq
esuk,fkd

3Pn8
m8scosukdeim8feikq·rkq

2 sinukdukdfk. s17d

This specific form of Eq.(17) suggests the use of the well-
known identity[1,2,21]

eik·r = o
n=0

`

ins2n + 1d jnskrdFo
m=0

n
sn − md!
sn + md!

Pn
mscosukd

3Pn
mscosudeimsf−fkdo

m=1

n
sn − md!
sn + md!

3Pn
mscosukdPn

mscosude−imsf−fkdG . s18d

After substituting Eq.(18) into Eq. (17), we obtain the solu-
tion of Esr d for homogeneous uniaxial anisotropic media and
express it in terms of the scalar spherical wave functions. In
order to have a compact and explicit solution to the boundary
value problem involving the spherical structures of aniso-
tropic materials, however, it is necessary to introduce the
spherical vector wave functions as follows[1–5,18–21]:

M mn
sld = zn

sldskrdFim
Pn

mscosud
sinu

û −
dPn

mscosud
du

f̂Geimf,

s19ad

Nmn
sld = nsn + 1d

zn
sldskrd
kr

Pn
mscosudeimfr̂ +

1

kr

3
d„rzn

sldskrd…
dr

FdPn
mscosud
du

û + im
Pn

mscosud
sinu

f̂Geimf,

s19bd

L mn
sld = kHdzn

sldskrd
dskrd

Pn
mscosudeimfr̂ +

zn
sldskrd
kr

3FdPn
mscosud
du

û + im
Pn

mscosud
sinu

f̂GeimfJ ,

s19cd

wherezn
sldsxd (where l =1, 2, 3, or 4) denotes an appropriate

kind of spherical Bessel functions—that is,jn, yn, hn
s1d, or

hn
s2d, respectively. Because of the complete property of the

vector wave functions given in Eqs.(19a)–(19c), we obtain
the expressions

Fq
esu,fdeikq·r = o

mn

fAmnq
e sukdM mn

s1dsr ,kqd + Bmnq
e sukdNmn

s1dsr ,kqd

+ Cmnq
e sukdL mn

s1dsr ,kqdge−imfk, s20d

wheren is summed from 0 to +̀ , while m is summed from
−n to n, andk is pointing in thesuk,fkd direction, whiler
is pointing in thesu ,fd direction in the spherical coordi-
nates. The other interparameters,Amnq

e sukd, Bmnq
e sukd, and

Cmnq
e sukd are provided in the Appendix.
Substituting Eq.(20) into Eq. (17), integrating with re-

spect tofk, and after some straightforward algebraic ma-
nipulations, we end up with
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Esr d = o
q=1

2

o
mn

o
n8

2pGmn8qE
0

p

fAmnq
e sukdM mn

s1dsr ,kqd

+ Bmnq
e sukdNmn

s1dsr ,kqd + Cmnq
e sukdL mn

s1dsr ,kqdg

3 Pn8
m scosukdkq

2 sinukduk. s21d

Equation(21) is the eigenfunction representation of electric
field in uniaxial anisotropic media. The representation of
magnetic field in uniaxial anisotropic media is very similar to
that of electric field in Eq.(21) and can be easily obtained by
changingE-field eigenvectors forH-field eigenvectors fol-
lowing Eqs.(15)–(20). The H-field eigenvectors can be de-
rived from theE-field eigenvectors shown in Eqs.(8)–(11)
by using the source-free Maxwell’s equations in the spectral
domain. Because the equations of theH field are very similar
to those of theE field, it is only given relative to theH-field
eigenvectors(i.e., Fq

h) and E-field eigenvectors(i.e., Fq
e) in

the Cartesian coordinate system

Fq
h = 30 − cosuk sinuk sinfk

cosuk 0 − sinuk cosfk

− msinuk sinfk msinuk cosfk 0
4

3
kq

vmt
Fq

e, s22d

whereq=1,2.
From the resulting equation(21), it is shown that the so-

lutions to the source-free Maxwell’s equations for the
uniaxial anisotropic medium are expanded in terms of the
first kind of spherical vector functions. Because spherical
Bessel functions of different kinds satisfy the same differen-
tial equation and the same recursive relations, the first kind
of vector wave functions in Eq.(21) can be changed easily to
the other three ones. So we can use the field expressions
given in Eq.(21) to characterize the scattering and radiation
involving the layered structures of the uniaxial anisotropic
media.

Assume that the electric field of an incident plane wave is
given by E= x̂E0e

ik0z. The incident wave fields(designated
by the superscriptinc) may be expanded into an infinite se-
ries of spherical vector wave functions for an isotropic me-
dium as follows[1–5,18,19,21]:

Einc = E0o
m,n

fdm,1 + dm,−1gfamn
x M mn

s1dsr ,k0d + bmn
x Nmn

s1dsr ,k0dg,

s23ad

H inc =
k0

ivm0
E0o

mn

fdm,1 + dm,−1g

3famn
x Nmn

s1dsr ,k0d + bmn
x M mn

s1dsr ,k0dg, s23bd

where

amn
x =5in+1 2n + 1

2nsn + 1d
, m= 1,

in+12n + 1

2
, m= − 1,6

bmn
x =5in+1 2n + 1

2nsn + 1d
, m= 1,

− in+12n + 1

2
, m= − 1,6 s24ad

ds,l = H1, s= l ,

0, sÞ l .
J s24bd

According to the radiation condition of an outgoing wave
and asymptotic behavior of spherical Bessel functions, only
hn

s1d should be retained in the radial function; therefore, the
scattering fields(designated by the superscripts) are ex-
panded as

Es = o
mn

fAmn
s M mn

s3dsr ,k0d + Bmn
s Nmn

s3dsr ,k0dg, s25ad

Hs =
k0

ivm0
o
mn

fAmn
s Nmn

s3dsr ,k0d + Bmn
s M mn

s3dsr ,k0dg, s25bd

where Amn
s and Bmn

s (with n being from 0 to +̀ and m
being from −n to n) are unknown coefficients,M mn

sld sr ,k0d
andNmn

sld sr ,k0d are solenoidal spherical vector wave functions
given in Eqs. (19a) and (19b), respectively, andk0
=vse0m0d1/2, e0, andm0 denote the wave number, permittiv-
ity, and permeability in free space, respectively.

The expressions of the electromagnetic fields inside the
uniaxial anisotropic sphere are given in Eq.(21), and the
continuity of the tangential electric and magnetic field com-
ponents atr =a yields

o
q=1

2

o
n8=0

`

2pGmn8qE
0

p

QmnqPn8
m scosukdkq

2 sinukduk

= fdm,1 + dm,−1gE0amn
x i

sk0ad2 , s26ad

o
q=1

2

o
n8=0

`

2pGmn8qE
0

p

RmnqPn8
m scosukdkq

2 sinukduk

= fdm,1 + dm,−1gE0bmn
x i

sk0ad2 , s26bd

where

Qmnq= HAmnq
e 1

k0r

d

dr
frhn

s1dsk0rdg jnskqrd −
ivm0

k0

3FBmnq
h 1

kqr

d

dr
frj nskqrdg + Cmnq

h jnskqrd
r

Ghn
s1dsk0rdJ

r=a
,

s27ad
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Rmnq= H ivm0

k0
Amnq

h 1

k0r

d

dr
frhn

s1dsk0rdg jnskqrd

− FBmnq
e 1

kqr

d

dr
frj nskqrdg + Cmnq

e jnskqrd
r

Ghn
s1dsk0rdJ

r=a
.

s27bd

The scattering coefficients—i.e.,Amn
s andBmn

s —are thus ex-
pressed as

Amn
s =

1

hn
s1dsk0adF o

n8=0

`

o
q=1

2

2pGmnq

3E
0

p

Amnq
e jnskqadPn8

mkq
2 sinukduk

− fdm,1 + dm,1gE0amn
x jnsk0adG , s28ad

Bmn
s =

1

hn
s1dsk0adF ivm0

k0
o
n8=0

`

o
q=1

2

2pGmnq

3E
0

p

Amnq
h jnskqadPn8

mkq
2 sinukduk

− fdm,1 + dm,1gbmn
x jnsk0adG . s28bd

From the coefficients of scattered fields by the uniaxial an-
isotropic sphere, the radar cross sections(RCS’s) can be
calculated—i.e.,

s = lim
r→`

4pr2uEsu2

uEiu2
=

4p

k0
2 FUo

n=1

`

s− idn

3H Pn
1

sinu
SA1n

s eif +
A−1n

s

nsn + 1d
e−ifD

+
dPn

1

du
SB1n

s eif −
B−1n

s

nsn + 1d
e−ifDJU2

+ Uo
n=1

`

s− idn+1HdPn
1

du
SA1n

s eif −
A−1n

s

nsn + 1d
e−ifD

+
Pn

1

sinu
SB1n

s eif +
B−1n

s

nsn + 1d
e−ifDJU2G . s29d

III. NUMERICAL RESULTS AND DISCUSSION

All results presented in this section are for nonmagnetic
(i.e., mt=mz=m0) spherical scatterers of radiusa and with
permittivity tensorē. The incident field is a plane wave with
electric field amplitude equal to unity, polarized parallel to
the x̂ direction, and that propagates in the positiveẑ direc-
tion.

To demonstrate the accuracy of the solutions achievable
by using the present method, we compare bistatic RCS’s inE

plane(xozplane as shown in Fig. 1) andH plane(yozplane
as shown in Fig. 1) with the Lorenz-Mie theory[1,2,18,19]
and the MOM conjugate-gradient fast-Fourier-transform
(CG-FFT) method[13], as shown in Figs. 2 and 3. The series
in Eqs.(26a) and(26b) converges rapidly, and it is sufficient
to takeN=4 as the upper limit of the summation indicesn
and n8. Certainly, it should be pointed out that the conver-
gence rate or the upper limit of the summation depends on
the electrical dimension of the sphere(with respect to the
wavelength). In Fig. 2, the RCS’s in bothE and H planes
using the formulations in this paper are compared with those
of Lorenz-Mie theory. An excellent agreement of the RCS
results is achieved between those two methods, where the
permittivity tensor elements are characterized byet=ez=2e0
and the electric size of the uniaxial anisotropic sphere is
chosen ask0a=0.5p or a=l /4. It is shown that the obtained
solution is stable even for almost isotropic scatterers, since

FIG. 2. Radar cross sections(RCS’s) versus scattering angleu
(in degrees): results of this paper(solid curve) and of the Lorenz-
Mie theory. The electric dimension is chosen ask0a=0.5p while the
permittivity tensor elements are assumed to beet=e2=2e0.

FIG. 3. Radar cross sections(RCS’s) versus scattering angleu
(in degrees): results of this paper(solid curve) and of the MOM
with CG-FFT fast algorithm(dashed curve). The electric dimension
is chosen ask0a=0.3p while the permittivity tensor elements are
assumed to beet=3e0 andez=2e0.
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the proposed solution is an analytical one of the uniaxial
anisotropic media, and the result of the Lorenz-Mie theory is
a special case of the present method. In Fig. 3, the RCS of
the uniaxial anisotropic sphere is computed using both our
formulation and the MOM-CG-FFT technique. Since the
MOM-CG-FFT approach is very efficient for the electrically
small size objects, the electric size of the uniaxial is chosen
as thek0a=0.3p, the permittivity tensor elements are char-
acterized byet=3e0 andez=2e0, and the uniaxial anisotropic
sphere is lossless. From Fig. 3, it is depicted that the RCS
results obtained using the two methods are in good agree-
ment; thus, it partially verifies that the proposed method and
the FORTRAN code developed in this paper are correct.

Figure 4 presents radar cross sections for a more general
lossless uniaxial anisotropic medium. It is assumed that the
permittivity tensor elements areet=5.3495 andez=4.9284.
The electrical dimension of the uniaxial sphere is chosen as
k0a=p and k0a=2p, respectively, where the convergence
number isN=6 for the electrical dimension ofk0a=p and it
becomesN=10 for the electrical dimension ofk0a=2p.
From Fig. 4, it is shown that the larger the electrical size, the
sharper the bistatic RCS becomes.

To illustrate applicability of this analytical solution to the
uniaxial anisotropic sphere of the electrically large size(for
example, in the resonance region), the RCS’s of a relatively
large uniaxial anisotropic sphere withk0a=4p under a plane-
wave incidence are given in Fig. 5. The permittivity tensor
elements are chosen aset=2+0.1i andez=4+0.2i. It is seen
that the RCS’s vary with scattering angle. When the dimen-
sions are increased, the convergence numberN=20 is also
increased.

IV. CONCLUSIONS

In this paper, an analytical solution to source-free Max-
well’s equations in uniaxial anisotropic media has been ob-
tained in terms of the spherical vector wave functions for

uniaxial anisotropic media. The method is developed based
on the expansion of a plane-wave factor of the field and the
Fourier transform where the unknown angular spectrum am-
plitude is determined. The three-dimensional electromagnetic
scattering of a plane wave by an uniaxial anisotropic sphere
has been theoretically formulated, physically characterized,
and numerically discussed. Numerical results for some spe-
cial cases are also obtained and compared with those of the
Lorenz-Mie theory and the method of moments accelerated
with the conjugate-gradient fast-Fourier-transform approach,
and a very good agreement is achieved. We also present nu-
merical results in the resonance region for the lossy uniaxial
media.
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APPENDIX: SCATTERING COEFFICIENTS OF
EIGENEXPANSIONS IN Eqs. (20), (27a), and (27b)

We let

Fq
esu,fdeikq·r = o

mn

fAmnq
e sukdM mn

s1dsr ,kqd + Bmnq
e sukdNmn

s1dsr ,kqd

+ Cmnq
e sukdL mn

s1dsr ,kqdge−imfk. sA1d

Because the spherical vector wave functionsM mn, Nmn, and
L mn are orthogonal and self-contained, the plane-wave factor
can be expanded as follows:

FIG. 4. Radar cross sections(RCS’s) versus scattering angleu
(in degrees) in theE plane(solid curve) and in theH plane(dashed
curve). The electric dimension is chosen ask0a=p and k0a=2p,
respectively, while the permittivity tensor elements are assumed to
be et=5.3495e0 andez=4.9284e0.

FIG. 5. Radar cross sections(RCS’s) versus scattering angleu
(in degrees) in theE plane(solid curve) and in theH plane(dashed
curve). The electric dimension is chosen ask0a=4p while the per-
mittivity tensor elements are assumed to beet=s2+0.1ide0 and e3

=s4+0.2ide0.
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x̂eikq·r = o
mn

famn
x M mn

s1dsr ,kqd + bmn
x Nmn

s1dsr ,kqd + Cmn
x L mn

s1dsr ,kqdg,

sA2ad

ŷeikq·r = o
mn

famn
y M mn

s1dsr ,kqd + bmn
y Nmn

s1dsr ,kqd + Cmn
y L mn

s1dsr ,kqdg,

sA2bd

ẑeikq·r = o
mn

famn
z M mn

s1dsr ,kqd + bmn
z Nmn

s1dsr ,kqd + Cmn
z L mn

s1dsr ,kqdg.

sA2cd

The coefficients of the plane-wave factorsamn
p , bmn

p , andcmn
p

(wherep=x,y,z) are the functions ofuk and fk. Their de-
tailed reduction and formulation have been derived in Ref.
[21], and we will provide here only the coefficients ofAmnq

p ,
Bmnq

p , and Cmnq
p (where p=e,h, and q=1,2) in Eqs. (20),

(27a), and (27b). The coefficients are the following: when
q=1 andmù0,

Amnq
e = in

2n + 1

2nsn + 1d
sn − md!
sn + md!

fsn + mdsn − m+ 1dPn
m−1scosukd

− Pn
m+1scosukdg, sA3ad

Bmnq
e = in

1

2nsn + 1d
sn − md!
sn + md!

fsn + 1dsn + mdsn + m

− 1dPn−1
m−1scosukd + sn + 1dPn−1

m+1scosukd + nsn − m+ 2d

3sn − m+ 1dPn+1
m−1scosukd + nPn+1

m+1scosukdg, sA3bd

Cmnq
e = in

1

2kg

sn − md!
sn + md!

fsn + mdsn + m− 1dPn−1
m−1scosukd

+ Pn−1
m+1scosukd − sn − m+ 2dsn − m+ 1dPn+1

m−1scosukd

− Pn+1
m+1scosukdg, sA3cd

andq=1 andm.0,

A−mnq
e = s− 1dmsn + md!

sn − md!
Amnq

e , sA4ad

B−mnq
e = s− 1dm+1sn + md!

sn − md!
Bmnq

e , sA4bd

C−mnq
e = s− 1dm+1sn + md!

sn − md!
Cmnq

e . sA4cd

Similarly, whenq=2 andm.0,

Amnq
e = in+1 2n + 1

nsn + 1d
sn − md!
sn + md!HWq

sedsukd
2

fsn + md

3sn − m+ 1dPn
m−1scosukd + Pn

m+1scosukdg

− mPn
mscosukdJ sA5ad

Bmnq
e = in+1 1

nsn + 1d
sn − md!
sn + md!HWq

sedsukd
2

fsn + 1dsn + md

3sn + m− 1dPn−1
m−1scosukd − sn + 1dPn−1

m+1scosukd

+ nsn − m+ 2dsn − m+ 1dPn+1
m−1scosukd

− nPn+1
m+1scosukdg + fnsn − m+ 1dPn+1

m scosukd − sn + 1d

3sn + mdPn−1
m scosukdgJ , sA5bd

Cmnq
e = in

1

kq

sn − md!
sn + md!HWq

sedsukd
2

fsn + mdsn + m

− 1dPn−1
m−1scosukd − Pn−1

m+1scosukd − sn − m+ 2dsn − m

+ 1dPn+1
m−1scosukd + Pn+1

m+1scosukdg − s2n

+ 1dcosukPn
mscosukdJ , sA5cd

andq=2 andm.0,

A−mnq
e = s− 1dm+1sn + md!

sn − md!
Amnq

e , sA6ad

B−mnq
e = s− 1dmsn + md!

sn − md!
Bmnq

e , sA6bd

C−mnq
e = s− 1dmsn + md!

sn − md!
Cmnq

e . sA6cd

Similar to the above, the eigenvector expansion coefficients
of the H field can be obtained.
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